登陆注册
8916500000029

第29章 冷却器优化设计(1)

13.1最优化设计数学模型

科学技术的发展提出了大量复杂的最优化问题,对冷却器优化设计也一样,现在只要提出冷却器各项指标技术参数,采用计算机就可以在几分钟内设计出一台冷却器。

最优化问题的求解方法是针对比较复杂的极值问题,提出一种区别于解析法的数学解法,亦称迭代算法。但由于在数学模型中,定义的是极大(小)值问题,对这种求解最优化问题的数值解法也称下降迭代解法,即迭代法。

1.最优化问题中数学的迭代法

按照某一迭代算式,从任意一个初始点X0开始,以某种递推格式产生如下点列:

X0,X1,X2,…,Xk,XK+1,…

若该点列所对应的目标函数值呈严格的单调下降趋势,即有:

f(X0)>f(X1)>f(X2)>…>f(Xk)>f(XK+1)>…

则产生此点列的算式和递推迭代格式就构成了一种下降迭代解法。在最优化方法中,迭代点的产生一般采用如下迭代算式:

X=Xk+αSk

式中,Sk称为搜索方向,α称为步长因子。此式以新的迭代点X从当前点Xk出发,沿方向Sk跨出α步长得到的。

为了让每一次迭代都能使目标函数获得最大的下降量,新的迭代点通常取作方向Sk上的极小点,亦称一维极小点,记作Xk+1,即有:

Xk+1=Xk+αkSk(13‐1)

其中,αk为最优步长因子。求最优步长因子αk和一维极小点Xk+1的数值算法称为一维搜索算法或线性搜索算法。

于是下降迭代解法的基本迭代格式可概括如下:

①给定初始点X0和一个足够小的收敛精度ε>0,并没计算单元k=0。

②选取搜索方向Sk。

③得到最优步长因子αk,并由Xk+1=Xk+αkSk计算得到新的迭代点Xk+1。

④最优解判断:若Xk+1满足收敛精度要求,亦称终止准则,则以Xk+1作为最优解,输出计算结果并终止迭代;否则,以Xk+1作为新的起点,即令k=k+1,转②进行下一轮迭代。

由此不难看出,要构成一个下降迭代解法必须解决以下3个基本问题:

①选择最合适的搜索方向,不同的搜索方向构成不同的下降迭代算法。

②寻找最优步长因子和新的迭代点,译本采用一维搜索算法。

③给定适当的终止判断准则。

2.算法的收敛性与终止准则

(1)算法的收敛性

当迭代算法产生的点列(所谓点列从各热阻的计算可知翅片管中每根管的翅片数,及翅片管根数)所对应的函数值严格地单调递减,并且最终收敛于最优化问题的极小点时,称此迭代算法具有收敛性。点列向极小点逼近的速度称为算法的收敛速度。作为一种可靠实用的最优化算法,不仅要有良好的收敛性,而且应具有尽可能快的收敛速度。

(2)终止准则

由于计算机的计算精度越来越高,任何最优化算法向极小点的逼近过程,都将是一个可望而不可及的过程。因为不可能让两个实数完全相等,所以精确的最优解是永远也不可能达到的。但是从工程角度考虑,一个精确度过高的最优解在计量和实施过程中是无法实现的,也没有必要的。因此,最优化计算只要求得到满足一定精度的近似最优解,而非精确最优解。判断迭代点是否达到给定精度要求的判别式称为最优解,而非精确最优解。判断迭代点是否达到给定精度要求的判别式称为最优化算法的终止(收敛)准则。

常用的终止准则有以下3种:

①点距准则。一般来说,迭代点向极小点的逼近速度是逐渐变慢的,越接近极小点,相邻迭代点间的距离越小。当相邻迭代点间的距离充分小,并且小于给定的收敛精度ε>0,即有:

Xk+1-Xk≤ε(13‐3)

时,便可认为点Xk+1是满足给定收敛精度的最优解。于是,可令X=Xk+1,输出X和f(X)后终止迭代。一般取收敛精度ε=10-6~10-4。

②值差准则。在迭代点向极小点逼近的过程中,不仅相邻迭代点间的距离逐渐缩短,而且它们的函数值也越来越近。因此,可将相邻迭代点的函数值之差作为判断近似最优解的另一个准则,这就是值差准则。即对于充分小的正数ε,如果f(Xk)-f(Xk+1)≤ε

或者

f(Xk)-f(Xk+1)

f(Xk)≤ε(13‐4)

成立,则令X=Xk+1,输出X和f(X)后终止迭代。

③梯度准则。由极值理论知,多元函数在某点取得极值的必要条件是函数在该点的梯度等于零。一般情况下,梯度等于零的点就是函数的极值点。但是在迭代计算中,梯度值不可能绝对等于零,故可认为,梯度的模小于给定精度(ε>0)的点就是函数的近似最优点。即当:

蜒f(Xk+1)≤ε (13‐5)

时,令X=Xk+1,输出X和f(X)后终止迭代。

通常,上述3种终止准则都可以单独使用,只要其中一个得到满足,即可认为已经得到了符合给定精度要求的近似最优解。

但是,在某些情况下,相邻迭代点及其函数值不可能同时达到充分接近。这时只有将点距准则和值差准则联合起来使用,才能保证得到真正的近似最优解。

3.线性搜索

下降迭代算法中在搜索方向Sk上寻求最优步长αk时通常采用一维搜索,亦称线性搜索。

线性搜索是构成非线性最优化算法的基本算法,因为多元函数的迭代求解都可归结为在一系列逐步产生的下降方向上的线性搜索。

对于函数f(X)来说,从Xk出发,在方向Sk上的线性搜索可用数学式表达如下:

minf(Xk+αSk)=f(Xk+αkSk)

Xk+1=Xk+αkSk(13‐6)

此式表示对包含惟一变量α的一元函数f(Xk+αSk)求极小,得到最优步长因子αk和方向Sk上的一维极小点Xk+1。

可见,线性搜索是一种一元函数极小化的数值迭代算法,可以简记为minf(α)

或者更一般的形式minf(x)

线性搜索的数值迭代算法可分两步进行。首先确定一个包含极小点的初始区间,然后采用逐步缩小区间或反复插值逼近的方法求得满足一定精度要求的最优步长和极小点。

(1)确定初始区间

设f(x)在考察区间内为一单谷函数,即区间内只存在一个极小点。这样在极小点的左侧,函数单调下降;在极小点右侧,函数单调上升。若已知该区间内的相邻3个点x1<x2<x3及其对应的函数值f(x1),f(x2)和f(x3),便可以通过比较这3个函数值的大小估计出极小点所在的方位。

①若f(x1)>f(x2)>f(x3),则极小点位于点x2的右侧。

②若f(x1)<f(x2)<f(x3),则极小点位于点x2的左侧。

③若f(x1)>f(x2)<f(x3),则极小点位于x1和x3之间,[x1,x3]就是一个包含极小点的区间。

可见,在某一方向上按一定方式逐次产生一系列探测点,并比较这些探测点上函数值的大小,就可以找出函数值呈“大-小-大”变化的3个相邻点。其中两边的两个点所确定的闭区间内必定包含着极小点,这样的闭区间称为初始区间,记作[a,b]。这种寻找初始区间的方法可归结为以下计算步骤:

①给定初始点x0,初始步长h,令x1=x0,记f1=f(x1)。

②产生新的探测点x2=x0+h,记f2=f(x2)。

③比较函数值f1和f2的大小,确定向前或向后探测的策略。

若f1>f2,则加大步长,令h=h2,转④向前探测;若f1<f2,则调转方向,令h=-h,并将x1和x2、f1和f2的数值分别对调,然后转④向后探测。

④产生新的探测点x3=x0+h,令f3=f(x3)。

⑤比较函数值f2和f3的大小。

若f2<f3,则初始区间已经得到,令C=x2,fc=f2,当h>0时,令[a,b]=[x1,x3];

当h<0时,[a,b]=[x3,x1]。

若f2>f3,则继续加大步长,令h=2h,x1=x2,x2=x3,转④继续探测。

分析可知,在上述确定初始区间的过程中,初始步长h的大小必须选择适当,太大时,产生的点x1或x2可能超出单谷区间的范围。太小时会延长确定初始区间的过程。

一般情况下取初始步长h=1.或0。

(2)缩小区间

线性搜索就是在给定的方向和初始区间上不断缩小区间,以得到该方向上的一维极小点的数值算法。缩小区间的基本方法是,在已知区间内插入两个不同的中间点,通过比较这两个点上函数值的大小,舍去不包含极小点的部分,将原区间缩小一次。

在区间[a,b]内,任选两个中间插入点x1和x2(x1<x2),并比较这两个点上的函数值:

①如果f(x1)<f(x2),则根据单谷区间的性质可知,极小点必在a和x2之间,于是可舍去区间[x2,b],得到新的包含极小点的区间[a,b]=[a,x2]。

②如果f(x1)>f(x2),则极小点必位于x1和b之间,舍去区间[a,x1],得到缩小后的新区间[a,b]=[x1,b]。

不断重复上述过程,就可以将包含极小点的区间逐渐缩小,当区间长度b-a小于给定精度ε时或区间内中间两个点的距离小于ε时,便可将区间内的某一个点作为该方向上的近似极小点。

可见,只要引入任意两个中间插入点就可将区间缩小一次。但是,不同的中间插入点所产生的区间缩小效果是不同的,得到一维极小点的速度也是不同的。不同的中间插入点的产生方法构成了不同的一维搜索算法。下面要介绍的黄金分割法和二次插值法就是其中最常用的两种算法。

(3)黄金分割法

黄金分割法亦称0.618法,它是按照“对称又对称”的原则选取中间插入点,并进而缩小区间的一种线性搜索算法。

若缩小一次后的新区间为[a,x2],要求区间内的点x1在新区间内仍然是一个具有同样对称关系的对称点,这样只需要再产生一个新点,就可以将区间又缩小一次。

考查点x1在新区间内的位置和对称性要求,知道原区间中的点x1在新区间内应处于点x2的位置。可以看出,新旧区间内的点x2到区间起点a的距离都是各自区间长度的λ倍。

4.无约束最优化算法

求解无约束最优化问题

minf(X)(13‐10)

其数值迭代解法,称为无约束最优化方法。无约束最优化方法是构成约束最优化方法的基础算法。

求解无约束最优化问题的下降迭代解法具有统一的迭代格式,其基本的问题是选择搜索方向和在这些方向上进行线性搜索。由于构成搜索方向的方式可以不同,从而形成了各种不同的无约束最优化算法。

根据搜索方向的不同构成方式,可将无约束最优化方法分为导数法(亦称解析法)和模式法(亦称直接法)两大类。

利用目标函数的一阶导数和二阶导数信息构造搜索方向的方法称为导数法。由于导数是函数变化率的具体描述,因此导数法的收敛性和收敛速度都比较好。常采用梯度法。

梯度法是一种古老的无约束最优化方法,它的迭代方向是由迭代点的负梯度构成的。由于负梯度方向是函数值下降得最快的方向,故此法也称为最速下降法。

梯度法的这一迭代特点是由梯度的性质决定的,因为梯度是函数在一点领域内局部变化率的数学描述。沿一点的负梯度方向前进时,在该点邻域内函数下降得最快,但是离开该邻域后,函数就不一定继续下降得快,甚至不再下降。这就是说,以负梯度作为搜索方向,从局部看每一步都可使函数值获得较快的下降,但从全局看却走了很多弯路,故梯度法的计算速度较慢。可以证明,梯度法只具有线性收敛速度。

在梯度法的迭代过程中,离极小点较远时,一次迭代得到的函数下降量较大。或者说,梯度法在远离极小点时向极小点的逼近速度较快,而越接近极小点逼近速度越慢。正是基于这一特点,许多收敛性较好的算法,在开始的第一步迭代都采用负剃度方向作为搜索方向,如后面将要介绍的变尺度法和共轭梯度法等。

梯度法的收敛速度与目标函数的性质密切相关,对于一般函数来说,梯度法的收敛速度较慢。但对于等值线为同心圆(球)的目标函数,无论从任何初始点出发,一次搜索即可以达到极小点。可见,若能通过适当的坐标变换,改善目标函数的性态,也可以大大提高梯度法的收敛速度。

13.2冷却器优化设计参数的求解

最优化设计方法实际上就是求函数的极值或求泛函的极值。如果目标函数有明显的表达式,则可以用微分法、变分法、最大(小)值原理等分析法、迭代法求解。当目标函数的表达式很复杂,或无明显的表达式时,则可用数学规划法或动态规划法直接选优。

1.解单变量函数极值问题的直接法

设目标函数y=f(x)在区间[a,b]上只有一个极值点,称则y=f(x)为单峰函数。多峰函数只要适当划分区间[a,b],可以使它在每一个子区间内均匀单峰函数,因此,假定y=f(x)在区间[a,b]上是单峰的。

在区间[a,b]上求一点x使得

f(x)=minf(x)

a≤x≤b

称x*为f(x)在区间[a,b]上的最优解。

同类推荐
  • 中国人的骄傲:神舟家族(征服太空之路丛书)

    中国人的骄傲:神舟家族(征服太空之路丛书)

    刘芳主编的《中国人的骄傲——神舟家族》是“征服太空之路丛书”之一。《中国人的骄傲——神舟家族》内容涉及神舟家族的各个侧面,文字浅显易懂,生动活泼。
  • 食品工厂设计

    食品工厂设计

    食品工厂设计是一项复杂的工作,要想完成设计任务必须做好多专业人员的合作。因此,对于食品科学与工程专业设计人员来说,为了保证设计工作的规范性和建成投产后的食品的卫生安全,除了掌握食品工厂工艺设计的原则和基本方法步骤外,还必须了解其他相关专业设计方面的知识并做好与其他专业设计人员的沟通交流和配合工作。因此,本书以“食品工厂工艺设计”为中心,内容包括基本建设的概念、基本建设程序的相关知识,食品工厂建设前期的项目决策及可行性研究的重要意义和方法,食品工厂公用工程设计的原则和方法,食品工厂设计对厂址选择、总平面设计和卫生等方面的相关规范要求以及食品工厂建成后的经济技术分析等。
  • 辉煌60年

    辉煌60年

    2011年是新中国航空工业创建60周年。为弘扬“航空报国、强军富民”的集团宗旨和“敬业诚信、创新超越”的集团理念, 中国航空工业集团公司离退休人员管理局、中国航空报社、中航出版传媒有限责任公司联合举办了“辉煌60年”征文活动, 组织离退休老同志以著书立说的形式, 发掘航空工业的光荣历史。活动得到老同志积极响应, 收到来自集团总部及所属成员单位老同志撰写的征文320余篇。经过专家评审, 评选出一等奖、二等奖、三等奖、优秀奖共计100篇。
  • 108分钟改变世界

    108分钟改变世界

    本书为2011年4月,俄罗斯为尤里·加加林完成“人类首次太空飞行108分钟”50周年而出版的纪念图书。全书共分7章。分别介绍火箭的故事;苏联航天器发射场的创建;控制系统和飞船的研制过程;宇航员的选拔;加加林飞行的整个经过;飞行成功后全世界的庆祝盛况。书后还附有关于加加林飞行的最新解密官方文件资料。
  • 中国航空工业大事记:1951—2011

    中国航空工业大事记:1951—2011

    《中国航空工业大事记(1951-2011)》如是记录了中国航空工业近60年走过的光辉历程,系统展示了新中国航空工业所取得的辉煌成就,全面体现了航空人奋进创新、报销祖国的精神风貌。本书内容翔实、系统,记述准确、可观、简明,不少信息属于首次披露,兼具纪念价值和史料价值,可作为工具书使用与收藏。
热门推荐
  • 星星红娘求爱记

    星星红娘求爱记

    苦情男恋爱一败在败,偶遇神秘老头指点,华丽转身变为红娘,为有婚缘的各路星座男女配对,其间发生了很多可笑可叹、可圈可点的爱情故事。
  • 感情患者

    感情患者

    最初的悸动,都是甜蜜。成长经历晦暗的她一直试图逃离父母,从小不曾感觉自己被爱,直到遇到他,他许她一个甜美梦境。她爱他,同时也被他爱着,这是世间最美好的事。可是感情世界里不止有欢喜,更多的还是泪水和忧伤,以及无止境的孤独。她想把全世界最美好的东西都给他,他……也该如此!她卑微地努力改变成他喜欢的样子,可他一次又一次地伤害她,她明知飞蛾扑火,还是情不自禁沉沦。只因他曾说过“我爱你,一辈子”,但真的有一辈子吗?
  • 神的故事

    神的故事

    如果人生能够重来,齐帆肯定不会走上这条路.英雄?传奇?神?世人都想走进来,齐帆却想走出去,英雄也好,传奇也罢,乃至于改天换地的神,在世人眼中总是无限美好,走近了却发现那曾经的美好,就像空中楼阁,怎么也摸不着.世间总是公平的,得之多少,就失之多少,得之喜悦总是短暂,失之遗憾却是永生难忘.那些路总是越走越窄,终点离得越近,就越孤独,那失去的悲伤也就越加清晰.
  • fx之校园风云

    fx之校园风云

    “爸,你怎么可以这样?再怎么说你也不能让我和一个不认识的人结婚吧!”郑秀晶。“婚事已定,岂能反悔?”爸爸也是为了你的未来着想啊,后面那句话郑临没说。郑秀晶和朴灿烈的浪漫罗曼史。请期待
  • 背着神界闯花都

    背着神界闯花都

    我算是这个世界最后一个神仙,我那老鬼师傅居然说我满身戾气,要我去花都修炼。为了世界和平,为了人间正道,我从此踏上这条花都不归路,不过让我应接不暇的是——校花、警花、女总裁纷纷加入我这维护世界和平的队伍,那我还是一并收了可好……
  • 豪门挚爱之钺少疼妻入骨

    豪门挚爱之钺少疼妻入骨

    慢慢的,女人勾起了男人的兴趣。“女人留在我身边。”“为什么?”“你离的开我吗?”“离不开了。”男人深吻着女人。————“你还要逃吗?”“要。”“你还逃的了吗?”“…”男人扛着女人一步一步的走回家,走到了幸福的尽头。
  • 倾世妖妃:陛下追我呀

    倾世妖妃:陛下追我呀

    一次错误的交易,使她身陷囫囵。“奚奕潇,我曾受之苦楚,必加诸于你身上!”闻言,当事人似毫不畏惧,视死如归。第二天,牢笼里只剩下一个人形的大洞。潇——暗部王牌间谍,没有人能够关得住她。然而她手段了得,离开前盗得帝王真心一枚。“跟你回去?除非你跪下求我。”这是一出你来我往夫妻追逐情感大戏,食用时请自配零食。********************************3月1号开始,正常更新
  • 宝宝联萌:王妃你又调皮了

    宝宝联萌:王妃你又调皮了

    老天爷,老娘上辈子和你有仇是不,看部电影也能穿越?行,咱也得跟上潮流,穿就穿吧!可是你让我穿成个亲爹不疼,姨娘不爱,亲娘嗝屁,未婚先孕的大肚子婆,是闹哪样?信不信老娘拿着个原子弹上天找你同归于尽!罢了罢了,随遇而安,随遇而安……且看我如何带着奶娃玩转古代,亲爹要求我乖乖回家?你放屁。姨娘想要陷害我?鞭子伺候。庶妹和渣男好上了?那神经病你喜欢就拿去。喂,说你呢,那个夺了我初吻的骚年,是不是该履行承诺,当老娘孩子的爹了?
  • 前夫的深度宠爱

    前夫的深度宠爱

    婚后,他外遇,她帮他把手门外。他甩人,她充当挡箭牌。他生气,她帮他揉胸口。他受伤,她背他上楼。他说滚,她大孕初期去淋雨。终于,受不了她的单纯无知,他说:“离婚!”她不哭也不闹,说:“好!”然后,爽快签字,华丽转身。离婚后,她摇身一变。高跟,红唇,名嘴,竟然化身法政界的王牌刽子手。
  • 豪门蜜宠:冷面老公小萌妻

    豪门蜜宠:冷面老公小萌妻

    苍小豆顶着私生女身份,内要照顾装疯卖傻的母亲,外要斗心如蛇蝎的生父后母,又逢闺蜜出卖……一大波糟心货组团来袭,势不可挡。自遇到风禹尊以后,她的人生就跟开了挂一样,什么成群结队的情敌,什么五花八门的陷阱,统统秒杀。“风少,那女人说她才是风少奶奶!”苍小豆摸着隆起的肚子说道。“哦?”风禹尊挑了挑眉,不经意道,“她是疯少奶奶,应该送精神病院。”