登陆注册
5978100000009

第9章

那么,其它怎样的凸多边形才能覆盖平面呢?1918年,法兰克福大学一位研究生卡尔·莱因哈特曾研究过这个问题。后来发表了论文,确定五种可以拼成平面的凸多边形。例如,他提出如果五边形ABCDE的各边分别为a、b、c、d、e,且c、e两边所对的角C、E满足C+E=180°,又a=C,那么这个五边形就能覆盖平面。

1975年,美国人马丁·加德纳在《科学美国人》这本杂志上开辟了关于镶嵌图案的数学游戏专栏,许多数学家和业余数学爱好者都参加了讨论。其中有一位名叫玛乔里·赖斯的家庭妇女是最热情的参予者之一。

赖斯是五个孩子的妈妈,1939年中学毕业前只学过一点简单的数学,没有受过正规的数学专业教育。她除了研究正多边形的拼镶问题以外,还研究了一般五边形。她独立地发现了一种五边形,并且向加德纳报告了这一发现:“我认为两条边长为黄金分割的一种封闭五边形可以构成令人满意的布局。”加德纳充分肯定了赖斯的研究成果,并把她介绍给一位对数学与艺术的和谐具有职业兴趣的数学家多里斯·沙特斯奈德。在沙特斯奈德的鼓励下,赖斯又发现了解决拼镶问题的另外几种五边形,而使这样的五边形达到13种。

赖斯的家务很忙,但这没有影响她研究的热情。她对人说:“在繁忙的圣诞节,家务占踞了我大量的时间,但只要一有空,我便去研究拼镶问题。没人时,我就在厨房灶台上画起图案来。一有人来,我就急忙地把图案盖上。因为我不愿意让别人知道我在研究什么。”

找零钱

一家手杖店来了一个顾客,买了30元一根的手杖。他拿出一张50元的票子,要求找钱。

店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。

顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的。店主不得已向邻居赔偿了50元。随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失。”

这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元。”

请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元。如果这个顾客行骗成功,那么共骗得了多少钱?

唐僧取经

一天,唐僧想考考三个徒弟的数学水平,于是他把徒弟们叫到面前,说:“徒儿们,现在我在地上写3个数,你们谁能准确读出来,我就把真经传给他。”

唐僧首先写出:23456。猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”

唐僧又写出:130567。孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”

第三个数是120034。沙和尚想了想说:“应该读作十二万零零三十四。”唐僧叹了口气,说:“如果一串数中有连续的几个零,读一个就可以了。所以这个数要读成十二万零三十四。徒儿们,你们的数学都学得不太好,还得继续努力呀,真经暂时不能传给你们呀!”

数字兄弟

有一天,数字0和5俩兄弟一起出去玩。

0弟弟说:“咱们一起拍张合影吧?”

5哥哥说:“好啊。”

“+”号听到了,说:“我来帮你们拍照!”

于是,它们便忙了起来,“+”号把它们按不同的位置拍了两张,就送到“=”号彩印冲洗店。

照片洗出来后,“=”号伸手向0和5要钱,它们俩呆呆地望着对方,自言自语说给多少呢?

“=”号得意的说:“50呗,你看你们俩“5”在前,“0”在后站在一起不就是50吗?”

0和5想了想说:“那要“0”在前,“5”在后站在一起是05,那给多少钱啊?”

这时“+”号走了过来,“=”号老弟你错了,任何数和0相加都等于任何数,不存在位置关系,所以5+0、0+5都等于5,你应该收它们5元钱才对呀!”

小朋友,你明白了吗?

“摸球游戏”与概率论

大约十年前,在北京西直门立交桥附近,曾有一个摆摊摸球的人。当时围观的人们觉得很新鲜,曾有很多人参与摸球。现在看来,这不过是一个小型的赌博游戏罢了。

这个游戏的规则很简单:他先摆出了12个台球一般大小的小球,其中有6个红色球和6个白色球。当着观众的面,他把所有12个色球装进一个普通的布袋中,然后怂恿大家来摸。怎么个摸法呢?就是从这个装有12个球的布袋中,随便摸出6个球来,看看其中有几个是红球,有几个是白球。当然,摸球者只能把手伸进袋口中把球一个一个地“掏出来”,而不能打开袋口看着摸。

这位摆摊的人,还设立了各种情况下的奖励方案,大致是这样的:如果谁有幸摸出了“6个红球”或者“6个白球”,那么摸者可以得到3元钱的奖励;如果摸出的是“5红1白”或者“5白1红”,那么摸者可以得到2元钱的奖励;如果摸出的是“4红2白”或者“4白2红”,那么摸者可以得到1元钱的奖励;但如果摸出的是“3红3白”,对不起,摸球者必须付给摆摊者3元。

当时的围观者甚众。乍一看来,在可能出现的所有7种情况中,竟然有6种可以得到奖励,只有唯一1种情况要“挨罚”,很多人便欣然参与。

奇怪的是,“3红3白”的情况特别的多,也许摸个一、两次,能撞个大运,摸个“4红2白”或者“4白2红”,赢下寥寥几元钱,但如果连摸五次以上,几乎是必“赔”的。一天下来,最为得意的当然是那个摆摊者。

有些赔钱的人肯定会有这种疑问:“为什么摸出来的6个球,总是3红3白呢?是不是这个摆摊的人有点特异功能,施了魔法呢?”

当然不是。这是数学中的“概率”所左右的结果。

大家都知道,根据排列组合的知识,从12个球中摸出6个球,总的方法数为:

其中“6红”或者“6白”的情况,都仅有唯一的1种,按照概率论计算,就是1/924的出现概率,真是太低了,在概率论中可以算作“实际上不可能发生”的小概率事件。

容易计算出“5红1白”或者“5白1红”的情况各是:

两种情况加起来就是72种,也就是出现总概率为72/924=6/77,还不到1/11,也够低的。所以这两种情况也难得出现。

出现“4红2白”或者“4白2红”的情况各是:

两种情况加起来就是450种,也就是出现总概率为450/924=75/154,将近1/2,也就是有一半的可能性。不过这两种情况每次都只能赢回1元钱。

最后我们来看看“3红3白”的情况:

所以,摸到“3红3白”的概率,就是400/924=100/231,虽然比上面那两种情况的可能性稍低,但也是将近一半的可能性。尤其一旦摸到“3红3白”,一次就会损失掉3元钱。

根据上面的分析,我们可以得到如下结论:最有可能出现的三种情况是“3红3白”“4红2白”和“4白2红”,而且出现“3红3白”的概率接近1/2,出现“4红2白”和“4白2红”的概率都接近1/4。

也就是说,一般来讲,如果志愿者摸了四回,往往其中的两回都是“3红3白”(共赔6元),另外各有一次是“4红2白”和“4白2红”(共赚2元)。算下总帐,4次摸球的结果,一般要赔进4元钱。

看来,参与摸球的人多半是会赔本的,而且摸的次数越多,赔出的钱也就越多。

看来,这位摆摊者巧妙地利用了概率论,成为不变的赢家。以后再遇到这种人,大家可千万不要上当啊!

对数的创立

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4、5、6、7、8、9、10、11、12、13、14……

1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384……

这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。

比如,计算64256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名着《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。

所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的着作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国着名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

大战食数兽

一天数学王国突然闯进一个三条腿怪兽,吓得数字公民纷纷逃走。怪兽张开血盆大口,一口吞下数24。接着它又吞吃了另一个数44。奇怪的是,怪兽却没有吃数5。

数学王国最高统治者零国王连夜和数1大臣商量对策。数14首先迎战怪兽。怪兽力大无比,数14被摔昏过去。数6和数35举起弓箭,连连发射,可是一点也伤不着怪兽。数100挺枪冲向怪兽。怪兽张开大嘴,一口吃了数100,吓得数6、数35扶起数14赶紧逃窜。

第二天,聪明的数1大臣想出了一个法子,派数60去迎战怪兽。数60见怪兽冲了过来倒地一滚,变成了数2和数30,因为230=60。怪兽一见掉头跑了。数60连忙又变成数12和数5,因为125=60。怪兽见状掉转头又冲了过来。这时侦探数7回来报告说:“怪兽名叫食数兽。为了长出第4条腿,它专吃含因数4的数。”

零国王和数1大臣连夜商量对策,第二天,零国王亲自出战与怪兽大战起来。

怪兽吞下零国王,倒地就死了。不一会儿,零国王领着几个数字公民全走了出来。

原来零国王钻进怪兽肚子里,和这三个数作了连乘,结果都变成了0,怪兽就饿死了。众人听了,齐声称赞零国王既勇敢又聪明。

华罗庚与帽子

出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。

少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时着名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!

华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:

有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。

3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。

聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。看到这里,同学们可能会拍手称妙吧。

后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

用字母代替数

幼儿学数,总是和量连在一起的。比如,2只苹果,3支铅笔。到了小学,已经不满足于具体的量了,而喜欢学比较抽象的数。这时,2不仅可以表示“2只苹果”,还可以表示“2本书”、“2个小孩”等等,它的意义更广泛了。所以,从量到数,是认识上的一次飞跃。

到了初中,我们又不满足于具体的数了,需要进一步的抽象化。

老奶奶给小孙孙讲故事,常喜欢这样开头:

“从前……”

小孙孙听故事时,感兴趣的是故事的情节,而并不很关心故事发生的具体时间,从来也不追问:

“从前——是哪一年,哪一月?”

老师对同学进行文明礼貌教育:

“在公共汽车上见到老人应该让座。”这意思大家一听就明白,从来没人追问:

“这老人是70岁吗?”

“是80岁吗?”

在这里,重要的是说明要注意礼貌这件事,至于老人具体多大年纪,不必去追究。

同类推荐
  • 应用写作教程新编

    应用写作教程新编

    《应用写作教程新编》,一仍原先《应用写作教程》的框架,内容分为“上编”和“下编”两大部分。上编为“基础知识”部分;下编为“文体知识”部分。基础知识部分是在高中语文课的基础上把写作划分为“主题”、“材料”、“结构”、“表达方式”、“文风”和“拟稿与修改”等六章,分别力求准确阐述其精华和要义,以作为应用写作过程的理论基础和指导思想,达到理论联系实际和学以致用的目的。
  • 归纳类推法训练(青少年提高逻辑思维能力训练集)

    归纳类推法训练(青少年提高逻辑思维能力训练集)

    当今时代是一个知识爆炸的时代,也是一个头脑竞争的时代;在竞争日益激烈的环境下,一个人想要很好地生存,不仅需要付出勤奋,而且还必须具有智慧。随着人才竞争的日趋激烈和高智能化,越来越多的人认识到只拥有知识是远远不够的。因为知识本身并不能告诉我们如何去运用知识,如何去解决问题,如何去创新,而这一切都要靠人的智慧,也就是大脑思维来解决。认真观察周围的人我们也会发现,那些在社会上有所成就的人无不是具有卓越思维能力的人。
  • 必用的歇后语精选

    必用的歇后语精选

    语文是一门博大精深的学科,是人们相互交流思想的汉语言工具。取舍得当,对学生有很高的实用价值,对教师教学有很好的参考价值,非常适合广大青少年阅读和收藏。
  • 餐饮服务与管理(第三版)

    餐饮服务与管理(第三版)

    本书分餐饮概述、餐饮服务和餐饮管理三编,介绍了饭店餐饮服务与管理的各种要素及其运行的程序与内在联系。内容包括餐饮企业的地位、任务和经营特点、餐饮服务基本功、餐饮产品的生产管理等。
  • 世界之最大全(快乐校园精品读物丛书)

    世界之最大全(快乐校园精品读物丛书)

    《快乐校园精品读物丛书:世界之最大全》无论从题材还是形式、风格上,都比较典型多样,同时贴近生活实际,具有一定的感染力,突出了“快乐阅读”和“精品读物”的主题,但是又具有一定的教育意义,能够使读者快乐之余还能够从文字中体验到名家的人生感悟。
热门推荐
  • 岁月撕扯着多少青春

    岁月撕扯着多少青春

    此文已弃此文已弃此文已弃此文已弃此文已弃
  • 水加冰

    水加冰

    在岚川,南方这个温暖的小城里,主人公木子和南方埋葬了很多记忆。青春的舞台上,南方幸运的遇到了舞伴舒焕,这场完美的邂逅却因被南方视为姐妹的莫宇的插入,而变的面目全非。还好这时,木子的出现又给了南方新的奇迹,让她相信友情是最坚强的后盾,而不久的以后,友情的再一次背叛,让她不得不相信,原来这世界上她始终只是一个人。木子是个阔家小姐,却有着叛逆的青春。她在厌倦中遇到了家族败落的南方,成为了最好的朋友。桑霖的出现,又为她滋润了爱情的天地。可是最后友谊的背叛,还是让她孑然一身。原以为就此散落天涯,不想命运又将其汇聚到一起。木子抛开束缚,选择了边走边爱的人生旅途。南方抛弃了原来的梦想,实现了另一个人生目标。在爱与恨的边缘,生活像是水和冰,痛彻心扉,但是她们却始终互相伤害又相互依赖。
  • TFboys铭刻

    TFboys铭刻

    走向明天的是你,,走向昨天的是我,,花开花落,半夕荷,吹欣利晚,为谁则?
  • 花开彼岸的睡莲

    花开彼岸的睡莲

    当她面对呐喊与否的时候,她说:“无论如何,有些话不能藏在心头。”当他面临日常与非日常的分岔口时,他说:“这不重要,我只要陪在她的身后。”她的笑宛如精灵,他的守护是最牢固的城墙。除妖世家的公子,似乎心怀他念的好友,突然闯进的冰美人......当她遇到不同的人和事,当她在他的帮助下解开一个个心结,当各类事件的真相浮出水面——她感觉到了,他手心的温度。睡莲花开,彼岸自心头。
  • 霸道总裁宋少好好爱

    霸道总裁宋少好好爱

    误打误撞看到男友与绿茶婊苟且,分手后被继母逼婚,不然就赶出顾家?本想怎么反打继母和前男友的顾安安,却被几个黑衣人拦住:“顾小姐,我们宋少有请。”
  • 茉莉的味道来的好晚

    茉莉的味道来的好晚

    两人的身份个有千秋,但是两人不会因为自己的身份阻碍两人之间的爱情。两人的爱情之路无比坎坷,两人能接受这份爱情之路的坎坷吗?他们会相信对方吗?
  • 烈火行

    烈火行

    倪家子孙当逆天行,当,倪天行!一场轰轰烈烈的政治风云,让娘胎里的她从世家小姐变成通缉犯,懵懂的长大,面对父亲的过世,她选择隐姓埋名,继续平凡的生活还是探查真相为父报仇。沉重的真相又会给她带来怎样的冒险。圣仪司上憨厚又富有正义感的猛男,阴郁却外冷内热的酷男,候选神使之间的纠缠不休又会给田行带来什么样的困扰,忠诚却又透着憨傻的幼时玩伴又会发生怎样的变化,详见烈火行。
  • 异界全能游戏大师

    异界全能游戏大师

    “你这辈子就只想当个废人吗?天赋十七?”李佑听着暗处的女子的轻嘲声,他摇了摇头,兜子里掏出了炼制了几天的极品药丸,扔在嘴中,转过身子叨叨:“切!还瞧不起废人了?废人多好啊,天天踢药馆子,偶尔打打高阶武器,平时买卖药丸赚赚钱,以后娶个漂亮老婆生个孩子,诺,生活多滋润啊!比现在还好呢!”(慢热型小说,希望大家支持!)
  • 重返不一样的学院

    重返不一样的学院

    被老师誉为状元之才的幕少安,高考成绩被人顶替,面对非富即的贵掠夺者,让他一个贫苦小子如何去争如何去斗。他陷入绝境,此生与校园绝缘终身禁考,他失去了前途。当那个深爱着自己,自己切亏欠良多女孩安祥的闭上双目,他失去了爱他的人。当看着倒在血泊中的母亲时他失去了唯一的亲人,双眼在无法掩藏的恨意,推着他走向灭亡。本以为拉着这些肮脏的人坠入地狱便是此生的终点。可是当我在次睁眼时,切回到了刚进高中时,看着熟悉而又陌生的校园。这一切都将重新来过吗?可是曾经的校园为何变得如此光怪陆离,自己同桌三年的沐雪竟是一条大白蛇。时常与她不对盘的莫小林切是个半调子的捉妖师。自己更是与恶魔签定了生死契约我突然看不懂这个世界了
  • 快穿之任务者0037

    快穿之任务者0037

    0037她是一个任务者,为了寻找自己的记忆穿越在无数的空间中并帮助界面中的女配完成心愿,每完成一个心愿可能会得到记忆的碎片:青梅竹马、冷酷无情、恶魔正太、经纪人、影帝......“oh,no为什么这些女配的心愿一个比一个奇怪。”某任务者默默地抱着泰迪熊蹲在墙角画起了圈圈...(与朋友一起写的哦)