登陆注册
5208200000004

第4章 形形色色的钟(4)

医生检查听力的时候,用一个小锤子敲的那个东西就是音叉。医生把用小锤击过的音叉放在患者的耳边,在一段时间内,患者耳边就响起持续的“嗡嗡……”的声音,这说明音叉产生了振动。如果音叉是用受温度影响很小的金属材料制成的,这种振动就是很稳定的。

当然,用来制造“音叉式电子手表”中的音叉,要比医生手里拿着的音叉小得多了,音叉式电子手表是怎样工作的呢?电池向振荡器供电后,振荡器就发生了振荡,电感线圈的磁场和固定在音叉两臂顶端的磁钢相互作用,驱动音叉振动起来,它的振动频率反过来又去控制振荡器的振荡频率,使整个振荡系统的振荡频率主要决定于音叉的振动频率,这就是所谓的稳频作用。音叉的一个臂伸出一个推爪,音叉振动时,它就推动计数轮,使整个齿轮系统转动起来,带动指针走动。

在音叉式电子手表中,已经割掉了传统的游丝、摆轮系统的尾巴,向着更高一级的方向发展,走时精度也相应地提高了,每天误差在5秒以内。

第三代电子手表是指针式石英手表。

音叉式电子手表的走时精度是提高了,但是它仍不能满足人们对精确时间的要求,人们开始采用更为理想的稳频元件——石英晶体。石英晶体具有十分稳定的物理和化学性能,它的稳频效果极佳。

第三代电子手表主要是由微型电池、石英晶体、集成电路、微型马达和齿轮、指示系统构成的。

石英晶体作为振荡电路中的一个稳频元件,接通电源以后和集成电路一起形成振荡,产生一个非常稳定的3Z佃赫兹的信号,也是通过集成电路将它变换成每秒振荡一次(1赫兹)的信号,并放大到足够强度,推动微型马达,带动齿轮、指针转动。

第四代电子手表仍然用石英晶体作为稳频元件,但它的机械结构已经减到了最少程度,连传统的齿轮、指针都不见了。代替齿轮的是集成电路,代替指针的是发光二极管或其他显示元件。人们称第四代电子手表为“数字显示石英手表”。

在人类制表的历史上,由于用了石英晶体作为稳频元件,又采用集成电路,使手表的制造发生了重大变革。石英手表是当前世界上走时精度最高的手表,每天误差只有0.1秒,1年还不超过半分钟。同时,它能自动走时,使用方便,形式新颖、美观、大方,使得它的钟表伙伴们相形见拙。

目前,电子手表正在向着高精度、薄型、小型、多功能方面发展。有些电子手表的功能竟达20种之多,除了显示时、分、秒,日、周、月外,还能显示出世界时,有的还能作为闹表、跑表使用。

在能源方面,现在人们已经研究出了光电池和太阳能电池,用来代替原来的微型电池,并且正在研究用人体体温作为电子手表新能源的途径,这是一种更为方便、更加实用的方法。

三万年差一秒的钟——原子钟

当今,我们不仅有了300年差1秒的晶体钟,还有了更高级的原子钟呢。比如铯原子钟,它看上去是一个方方正正的不算大的机柜,上面布满了各种开关、旋钮、红绿指示灯……要不是看到上面几个显眼的大字“铯束管原子钟”,根本就不会相信这是一台钟,因为它和普通的钟表比起来,已经是面目皆非了。

铯束管原子钟及其他各种类型的原子钟,都是用“原于跃迁”的频率来计时的,这个频率很高并极其稳定,所以它的计时精度也非常高,可达3万年差1秒!上面我们讲过的晶体钟虽然已经很精确,但它有老化漂移等现象,因此还不能作为1级时间频率标准,而原子钟才是目前世界上公认的1级时间频率标准。

原子钟可真棒,3万年才差1秒,多准啊!

随着人类的认识向着微观世界发展,揭示了原子的秘密以后,又给人类计时提供了更精确的方法,因为微观世界的稳定性远远超过了宏观世界。

在宏观世界中没有完全相同的个体,一对孪生兄弟,看起来十分相似,但仔细观察,就可以找出它们的差异来;同一厂家用同样的元器件生产的电视机,外观一模一样,但质量却各有优劣。

在微观世界中则恰恰相反,有着许多完全相同的东西,我们不能把一个电子和另一个电子区别开来,我们也不能把同种元素的一个原子与另一个原子区别开来。这并不是由于我们的测量仪器过于粗笨,而是它们的确完全相同,原则上无法把它们区别开来。即使在地球深部的高温高压下,也不能改变它们的性状。

所有计时方法和计时工具,都是基于物体有规律的变化。如地球绕太阳1年旋转1周,地球1天自转1周,普通手表每秒摆轮摆5次,晶体钟每秒振荡枷万次,而原子钟是用原子的“振动”来计时的,它每秒钟振动竟达几十亿次。计时频率的提高,本身就意味着计时精度的提高。

从印年代原子钟问世以来,到现在已经发展成一个“家族”了。有最初的氨分子钟、有铷原子钟、铯原子钟,还有氢原子钟……每种钟又有不同的类型。

原子钟虽然多种多样,但它们的工作原理却是基本相同的。都是利用了原子跃迁的周期稳定这个特点。

三百年差一秒的钟——晶体钟

有了高稳定晶体振荡器,像在电子手表中一样,只能说有了一个高级的“电子摆”,它本身并不能构成一个完整的钟。

高稳定晶体振荡器的振荡频率一般为每秒2田万—枷万次,每一个振荡周期只有几百万分之一秒,即零点几微秒,这样小的时间刻度,对无线电技术和时间频率的计量来说,已是很精确、很方便的了,但对于我们传统的时、分、秒的计时观念来说,这样的时间刻度又嫌太小。

假如我们能够对晶体振荡器的标准信号加以变换,使其分别产生每秒振荡一次、每分振荡一次、每小时振荡一次的信号……频率越低,周期越长,这样就和我们日常所用的钟表一一对应起来。再将这些低频信号通过数字形式或机械形式显示出来,这就构成了一个由晶体振荡器决定稳定性的标准时钟——晶体钟了。

现代电子学的发展,使人们很容易实现上述的设想。晶体钟早已制造出来了,早在1927年,美国贝尔电话实验室马里森第一个研制出晶体钟,用来计量时间;1933年,东京天文台首先装备了晶体钟,用来保存准确的时间。发展到现在,晶体钟在各个领域得到了更加广泛的应用,无论是在计量局的标准室里,还是在广场的高大建筑物上,或是在体育比赛的大厅里,我们都可以发现晶体钟的“踪迹”。虽然它们的计时精度要求各不相同,但它们的基本工作原理都是一样的。

晶体钟一般是由下列几部分组成的。高稳定晶体振荡器将5兆赫(或2.5兆赫)标准信号送给第一个分频器,分频5×106次,得到每秒一周的信号,即“秒”信号;再通过第二个分频器,分频印次,就得到每60秒一周的信号即“分”信号;再经过第三个分频器,继续分频印次,就得到每3600秒一周的信号,即“时”信号。将分出的秒、分、时信号送到译码显示电路,就可以以数字形式显示出××时、××分、××秒来,和石英手表一样读起来非常方便。现代的数字显示方法多种多样,有数码管显示,发光二极管显示、液晶显示及等离子显示等。显示的颜色有红的、橙色的、绿色的……数字闪烁跳跃,十分直观好看。

光是这样还不够,我们可以想象到,如果振荡器不断地输出标准信号,时间一分一秒地积累起来,就会出现“25时××分××秒”的情况,时间再长会出现35小时、48小时……的情况,这就和我们实际应用产生了差异。所以还必须加上一套调整电路,当时间积累满34小时后,使整个系统完全恢复到零位,计时再重新开始,这就是“复零电路”的作用。正像我们常用的钟表一样,指示的最大数值是12点,过了12点以后,指针的读数又重新开始了。

如果我们用频率变换的方法,将得到的秒信号驱动一个机械装置——同步钟,一个秒信号使同步钟的秒针跳动一次,并带动分针、时针,这就构成了一个机械指示的晶体钟,这跟我们日常用的钟表就更相似了。

讲到这里,需要特别指出,在信号变换过程中,并没有改变高稳定晶体振荡器的稳定度,得到的时、分、秒信号的稳定度仍然可保持在10-10量级。从这个意义上来说,高稳定晶体振荡器就相当于普通钟表里的“机械摆”,它是稳频的关键部件,所以有人管它叫做“晶体钟摆”,也是有一定道理的。

如果1台晶体钟的稳定度是1×10-10,那么它相当于多少年差1秒呢?相当于317年差1秒,通常我们就说成3印年差1秒。这样的钟多准啊!如果我们每一代人按30年来计算,那么3印年就整整是10代人的时间!这就是说,我们上溯10辈的先祖对准的钟表,走到现在,只不过才差上1秒钟!

长时间间隔的测量——放射性“时钟”

1973年4月,修建雄伟壮观的北京饭店新楼时,在工地下约13米深处发现两株古木,1株略有腐朽,材质松软,另1株已经炭化,质地坚硬。经过科学院考古研究所的测定,这两株古木距今已有30000年之久……古木静静地埋在地底下,历史文献上不可能找到关于两株普通树木的记载。千百万年前,更不可能有人在它们旁边放置一个时钟,而且,迄今为止,我们所发明的普通钟表、晶体钟以及原子钟,还没有一种能够工作千百万年之久。那么,科学工作者是怎样测定这两株古木年龄的呢?

大家知道,我们在生活、生产和科学实验等项活动中,不仅需要计量极短的时间,像前面讲的那样,有的短至亿万分之一秒的时间间隔;而且也需要计量长达千、百、万、亿年的时间间隔。比如考古工作者要测量历史文物的年龄,以至于人类的起源。又比如地质工作者要研究各种地层形成年代,甚至于地球本身是什么时候形成的;天文工作者要研究太阳及其他恒星有多少岁……这些都是摆在科学工作者面前的重要课题。要决定这两株古木年龄的问题,只不过是这样许许多多的问题中的一个。

科学工作者用什么方法来测量这么长的时间间隔呢?现代的各个科学领域都是互相交错、互相渗透、互相促进的,首先解决这些问题的,不是考古学家,不是地质学家,也不是天文学家,而是放射化学家。

放射化学家研究出一种独特的时钟。这种时钟既不需要定期地上紧发条,也不需要经常维修保养,但它却能测量极长的时间间隔。这种钟是利用放射性原理来计量时间的,我们管它叫做“放射性时钟”。

同类推荐
  • 动物也恋爱:动物繁衍

    动物也恋爱:动物繁衍

    人类的恋爱活动中,一般都是男士处于主动进攻的状态。当他们遇到一位与自己的梦中人非常吻合的女孩,或者当他们心仪已久的女孩子给了他们一丝希望的时候,他们的神经兴奋就会被高度激发起来,于是不顾一切地投身到恋爱运动之中,向目标发起最猛烈的进攻。而恋爱中的女人呢,则会在恋爱的过程中通过服饰、气味以及其他行为来吸引异性……动物们的恋爱又是怎样进行的呢?让我们一起,走进《青少年科普图书馆·动物也恋爱:动物繁衍》,窥探这些生灵的秘密,一起来解析动物的恋爱吧!
  • 拿破仑的故事

    拿破仑的故事

    本书选取古今中外40位有代表性的政治家、科学家、文学家、艺术家等在各领域做出卓越贡献的,对人类历史有重大影响的传奇人物,以他们的成长经历和奋斗历程编写成10万字左右的传记,并配有少量插图。
  • 精灵勇者4:守护盟战

    精灵勇者4:守护盟战

    灵星小学来了一位新老师何墨,付兰敏感地从新老师身上感受到一股神秘的黑暗气息。平静的校园生活暗藏汹涌,从异世界之门来到现实世界的恶魔们蠢蠢欲动……不入虎穴焉得虎子!守护和平和希望的少年们,决定利用空间频率波动一致原理,带着精灵使者们前往魔界,寻找魔王沉睡之地,彻底封印魔王。热衷于收集玩偶公仔的“熊爸“、见到女生就叫妈妈的”恶童“,勇者们惊讶地发现,原来恶魔并不是都心怀恶意……在渴望和平的恶魔们的帮助下,少年们即将迎来最终胜利……但是,隐藏在暗处的黑暗力量和被魔王意识控制的付兰,会这么容易让勇者们达成所愿吗?光明与黑暗的交锋,这是见证精灵勇者们勇气、力量与决心的守护战!
  • 超人学校

    超人学校

    为了躲避黑水晶星球影子巫师的入侵,李大奇和他的爸爸妈妈从梦星回到了地球。在童话镇他们遇到了很多奇怪的事情:童话镇小学马校长制作了很多玩具兵;黑水晶星球的人入侵地球时,桔子骑士莫名现身……具有超能力的李大奇和马校长决定训练并率领童话镇小学的学生们前往黑水晶星球,他们最终成功打败了影子巫师,并且拯救了被影子巫师囚禁在黑水晶星球的人们。
  • 安徒生童话精选(世界最美儿童文学第二辑)

    安徒生童话精选(世界最美儿童文学第二辑)

    一代童话大师安徒生倾尽毕生心血打造了一个瑰丽的幻想王国,在这个“献给未来的一代”的神秘世界里,有为了心上人的幸福甘愿化作泡沫的小美人鱼,有历经千辛万苦最终变成了白天鹅的丑小鸭,有全心全意解救变成野天鹅的哥哥们的小公主艾丽莎……她们扣人心弦的故事让我们感受到爱情、梦想和勇气的惊人力量。与此同时,冻死在新年街头的卖火柴的小女孩、穿着根本就不存在的“新衣”的荒唐皇帝、活活变成自己的影子的附庸的可怜学者……又让我们动容于底层劳动者生活之艰辛、社会投机者手段之奸猾和普通民众认识之浅薄。安徒生的童话充满了诗意的美和戏剧性的幽默,是一部集浪漫与现实、歌颂与讽刺、希望与幻灭于一体的跨时代经典巨著。
热门推荐
  • 法皇之梦

    法皇之梦

    在一个四种族的世界上,怀着希望梦想的他,能否成就自己的梦想呢?让我们鼓励支持他吧,成就他的梦想。
  • 我叫晨晨晨

    我叫晨晨晨

    这座城市不相信眼泪,这个世界也不相信眼泪!人活在这世上谁没点心酸的过往!朝前看,朝前走,我叫晨晨晨,就叫晨晨晨。
  • 乐府诗集

    乐府诗集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 纯情恶魔:易少,吻上瘾

    纯情恶魔:易少,吻上瘾

    【1V1】【女强男强】【非女尊】原本,易期漠来A市就是想抱个温柔贤惠的小妹子回家好好过日子,谁知订婚对象却颠倒了易期漠的世界观。温柔?体贴?淑女?大家闺秀?“放你娘的螺旋屁!”宁知晚言。被扑倒?被强吻?被强抱?被强行交往?没错,宁知晚都做了。家里娇夫太稚嫩,老婆大人夜夜求!易期漠悲,跑走?跑不掉,拒婚?舍不得,撕逼?娃咋办——“易美人,过来给我抱抱”“咱们睡觉吧易美人”“易美人小声喘娃在隔壁屋呢”“唔易美人别哭,老婆给床咚给抱抱”“易美人昨晚好棒的!”且看腹黑小姐如何推倒纯情恶魔,且看女孩撩夫九九八十一计,且看强势少爷变小白兔养成记!男女主身心干净
  • tfboys,十年之约

    tfboys,十年之约

    当虎牙队长遇上了天真的沈雨樱;当星星眼少年遇到了和他一样的萌萌哒的沈雨溪;当梨涡少年遇到了吃货沈梦琪,他们几个会摩擦出怎样的火花呢?
  • 你不可不知的对抗疲劳100招

    你不可不知的对抗疲劳100招

    《你不可不知的对抗疲劳100招》内容简介:对抗疲劳的方法源于人们的社会实践活动,具体方法有很多,季昌群编著的从饮食、运动、心理、中医、生活起居等方面例举了100个对抗疲劳的妙招,可供读者在浏览时学习使用。
  • 地狱归来的彼岸

    地狱归来的彼岸

    当我杀了最后一个人的时候,我就是最强的了,可是我却众叛亲离---------夜雨魅那一年,来到彼岸谷的我,就彻底的变了。嗜血,冷酷,残忍.......从夜氏千金变成黑道女王,我不知我为什么要这么做,只因那多妖艳的彼岸花。因为这朵彼岸花让我进入紫汐背叛?欺骗?我累了,可是那朵彼岸花却依然妖艳。“累了吗?彼岸继承人”“累又能怎样,我活着究竟是为了什么”“活着不因为什么”
  • 灵魂摆渡人:沙华恋

    灵魂摆渡人:沙华恋

    “叮咚……”时针刚好12点整。窗旁的风铃叮叮当当的响起来一个身穿西装的男人坐在床边抱着自己的双腿“别别别别过来,我求你。我不想杀他的”突然一个身穿着红衣的男子凌空出现在卧室里,他的长发如墨凌乱的洒落着,桃花眼散发出冰冷的气息。左眼下有一颗血红的泪痣。红衣是一件古装圆领袍。袍子上绣着四朵黑色曼陀罗。手中拿着一本账本,凉薄的声音在空中游荡“陆易,26岁,为名利把自己的情人杀了。给你两个选择,一跟我回地狱,二入忘川河。”“不,我我求你,放过我,我的钱财,我的一切。都给你我求你,放过我”红衣男子邪魅一笑“杀人偿命。入地狱。难道你不知道?”“我后悔了,我求你放过我吧…”放过你?入地狱吧……
  • 综漫之白泽一族的故事

    综漫之白泽一族的故事

    我仰面向上,去探求,去思索,除了哥哥外谁还知道我的存在?真想知道我出现之后他们的表现是什么样子啊!
  • 魔逆乾坤

    魔逆乾坤

    奇遇少年一步步的踏上异界征程,凭借着他那坚韧不拔的品质,客服重重困难,打到了所有阻挡在他前方的敌人,最终成为神一样的存在,他就是要成为神的男人,热血,战斗,不放弃,不服输。踏异界征程、附魔神之体、征万载千秋。被仇恨充满心智的热血少年踏上不归途,书写不一样的精彩。