登陆注册
25333100000016

第16章 三角形

三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。【也有等腰直角三角形】

中文名:三角形

外文名:Triangle

别称:三边形

表达式:图形

提出者:阿基米德

更多

微信文章

新闻动态

知乎精选

基本定义

由同一平面内,且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形叫做三角形(********),符号为△。三角形是几何图案的基本图形。

分类

按角分

判定法一:

锐角三角形:三角形的三个内角都小于90度。

直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。

钝角三角形:三角形的三个内角中有一个角大于90度。

判定法二:

锐角三角形:三角形的三个内角中最大角小于90度。

直角三角形:三角形的三个内角中最大角等于90度。

钝角三角形:三角形的三个内角中最大角大于90度,小于180度。其中锐角三角形和钝角三角形统称为斜三角形。

判断方法

由余弦定理延伸而来

若一个三角形的三边a,b,c(a≥b≥c>0)满足:

1.b?+c?>a?,则这个三角形是锐角三角形;

2.b?+c?=a?,则这个三角形是直角三角形;

3.b?+c?<a?,则这个三角形是钝角三角形。

按边分

不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。

等腰三角形;等腰三角形(isosceles********),指两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。等腰三角形中腰的平方等于高的平方加底的一半的平方。等腰三角形的腰与它的高的关系,直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。

等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。

周长公式

若一个三角形的三边分别为a、b、c,则

面积公式

1

(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。

2

(其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数)

3

(l为高所在边中位线)

4.1

(海伦公式),其中

4.2

秦九韶公式(与海伦公式等价)

5

(其中,R是外接圆半径)

6S=rp(其中,r是内切圆半径,p是半周长)

7在平面直角坐标系内,A(a,b),B(c,d),C(e,f)构成之三角形面积为

。A,B,C三点最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小。

8

(正三角形面积公式,a是三角形的边长)

9

(其中,R是外接圆半径;r是内切圆半径)

10

11

此公式与秦九韶公式,海伦公式是等价的

设三角形三边为AC,BC,AB,

点D垂直于AB,为三角形ABC的高

利用三边关系求

再利用勾股定理

求得CD,再用

面积=底×高÷2

“四线”

中线

连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。

从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。

角平分线

三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线(bisectorofangle)。

中位线

三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。切记,中位线没有逆定理。

性质

1在平面上三角形的内角和等于180°(内角和定理);

2在平面上三角形的外角和等于360°(外角和定理);

3在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4一个三角形的三个内角中最少有两个锐角。

5在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6三角形任意两边之和大于第三边,任意两边之差小于第三边。

7在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

*勾股定理逆定理:如果三角形的三边长a,b,c满足a?+b?=c?,那么这个三角形是直角三角形。

9直角三角形斜边的中线等于斜边的一半。

10三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

11三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

12等底同高的三角形面积相等。

13底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

14三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

15等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

其他

16在同一个三角形内,大边对大角,大角对大边。

在三角形中

,其中角α,β,γ分别对着边a,b,c。

17在斜△ABC中恒满足:

18△ABC中恒有

19三角形具有稳定性。

边角关系

三角函数给出了直角三角形中边和角的关系,可以用来解三角形。

三角函数是数学中属于初等函数中超越函数的一类。请参考相关词条。

全等三角形

定义

两个能够完全重合的三角形称为全等三角形。

性质

全等三角形的对应角相等,对应边也相等。翻折,平移,旋转,多种变换叠加后仍全等。

判定

1两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS“;

2两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”;

3两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”;

4两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”;

5两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“斜边、直角边”或“HL”;

注:“边边角”即“SSA”和“角角角”即:“AAA“是错误的证明方法

相似三角形

定义

对应边成比例的两个三角形叫做相似三角形。

性质

1相似三角形对应边成比例,对应角相等。

2相似三角形对应边的比叫做相似比。

3相似三角形的周长比等于相似比,面积比等于相似比的平方。

4相似三角形对应线段(角平分线、中线、高)之比等于相似比。

判定

1如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。

2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。

3如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。

4如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。

特殊点、线

五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。

五心的距离

OH?=9R?–(a?+b?+c?),

OG?=R?–(a?+b?+c?)/9,

OI?=R?–abc/(a+b+c)=R?–2Rr

GH?=4OG?

GI?=(p?+5r?–16Rr)/9,

HI?=4R?-p?+3r?+4Rr=4R?+2r?-(a?+b?+c?)/2,

其中,R是外接圆半径;r是内切圆半径。

三角形的稳定性

在所有平面多边形中,唯三角形具稳定性。

证明

任取三角形两条边,则两条边的非公共端点被第三条边连接。

∴第三条边不可伸缩或弯折

∴两端点距离固定

∴这两条边的夹角固定

∵这两条边是任取的

∴三角形三个角都固定,进而将三角形固定

∴三角形有稳定性

任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接

∴两端点距离不固定

∴这两边夹角不固定

∴n边形(n≥4)每个角都不固定

∴n边形(n≥4)没有稳定性

证毕。

作用

三角形的稳定性使其不像四边形那样易于变形,有着稳固、坚定、耐压的特点。三角形的结构在工程上有

着广泛的应用。许多建筑都是三角形的结构,如:埃菲尔铁塔,埃及金字塔等等。

同类推荐
  • 忆梦大陆

    忆梦大陆

    忆梦,忆一世之梦,欢迎大家光临忆梦的空间,在这里没有豪华灿烂的打斗场面,没有惊世骇人的魔法、斗气,却有着忆梦的空间,一份属于自己的忆梦空间。在忆梦的大陆上,有的人想要征服整个大陆,有人想要保住自己地位,而有的人只想保住自己的简单的生活。.........当有一天,罗斯的天空发生变化的时候,李谦却被蒙在鼓里,被一纸谎言瞒着,被一纸的信念支撑着,当发现自己的努力动力来源于一直谎言的时候,李谦......
  • 异色年华

    异色年华

    ……………………………………………………………………………………
  • 圣龙游侠

    圣龙游侠

    我们来自星界不同的家族;我们是内心不忘彼此的兄弟;我们是拥有圣龙血脉的游侠;我们生于艾尔瑞斯星;我们,虽已重生,但却永远不忘那段时光珍藏的记忆……
  • 天胎

    天胎

    “我是谁,我为了什么而活,我的父母是谁?为何让我出现在这个世界里,我将何去何从?”天地茫茫,苍穹破裂,龙凤交织,天法既现,具无尽大道出生,天地之子,定当搞它个翻天覆地。掌控了天地洪荒,练就了玄黄不灭......纵使摆脱了六道轮回,也难逃那人界狂荡.....一个浩大的道法世界,奇幻万千!各种神明传说,奇异玄法,吉凶绝地;疯狂的爱情玄异惊险之路,远古遗闻,身世之谜,以血祭刀洒出满腔热血杀上......
  • 阴尸还魂

    阴尸还魂

    僵尸降妖除魔你见过吗?鬼怪会修真你知道吗?僵尸成长记《阴尸还魂》。
热门推荐
  • Histories

    Histories

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 鼓浪屿有约

    鼓浪屿有约

    馒头的一生:做着汉堡的梦,偏偏是就咸菜的命,想换个烧饼或面条的生活,却压不扁也擀不平。其实咱也曾将梦想发酵,经过水深火热方始成长,其实咱也有咱的用,没了咱人还不饿出病?那就把自己养得软嫩光鲜,把工作做得圆滑有型,有问题大不了回炉重做,把这一辈子活得热气腾腾——
  • 长生序引

    长生序引

    始皇帝,焚书坑儒。断圣道!孔孟后,再无圣人!费兰肯斯坦到底发现了什么,才能赋予怪物生命!第四帝国原来真的存在!
  • 终极控水者

    终极控水者

    谁说男人就应该掌控火的异能,就是这么一个小子独树一帜,掌握着控水的能力,将其发挥到了极致。这是我第一次写文章,希望大家能喜欢,多多收藏啊!!
  • 穿越者少主

    穿越者少主

    关于穿越,关于梦想,关于很多人很多事。一开始我以为天上掉馅饼,后来才发现是个麻烦。我不介意戒指里有老爷爷吸我血,看在给我秘籍当我字典的份上我也就忍了,可是为毛老爷爷有一群?还有,表哥大人,为什么你也混在老爷爷里面?
  • 迈向究极幻想

    迈向究极幻想

    诡异的车祸,失去的七年光阴。再次醒来于剑与魔法的世界之中。游戏世界。这是存在于数据上的虚构世界,亦或是真实存在的世界?不过,真实也好,虚构也好。『我将走向混沌与毁灭之路』『将这个世界搞的一团糟』『我的名字是』『迦南』愤怒的男青年如此说道,他要将这里搞的一团糟,揪出玩弄他的命运的家伙。神也好,魔也好。故事,开始了。
  • 平蜀记

    平蜀记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 集缘石

    集缘石

    看似寻常的毕业旅游,草草结束。待回家,只剩一片废墟。手中唯一留下出游前母亲塞手心的一块古朴粗糙的石头,却被一个陌生求婚者顺走。于是主人翁付夏楠和膏药般喜欢粘着自己的死党千语开启了坎坷离奇的旅程。当千语被睡在身边的付夏楠吓得惊叫滚下床时,背后延续万年的势力以各种形式展开了拉锯战。付夏楠的真实身份逐渐获悉,唯有手中石头不断的集缘方可获救。付夏楠与千语的结局会如何。。。
  • 鸦片战争

    鸦片战争

    1840-1842年的鸦片战争,是封建的中国变为半殖民地半封建的中国的转折点。18世纪70年代,英国开始把鸦片大量输入中国。1839年6月3日至25日,林则徐将缴获的237万多斤烟土在虎门海滩当众销毁。英国政府很快做出向中国出兵的决定。1840年6月28日,第一次鸦片战争正式爆发。鸦片战争标志着中国近代史的开端,从此,中国人民面临着更为复杂曲折的斗争。《中国文化知识读本:鸦片战争》以优美生动的文字、简明通俗的语言、图文并茂的形式,介绍了鸦片战争的有关内容。
  • 第一豪门嫡女

    第一豪门嫡女

    上官凝儿打小就是个任人欺凌的千金嫡小姐,生母死得早,姨母上任,本应该是表姐现在成了庶姐,幸好姨母只是个姨娘,为了守住母亲的嫡母(主母)身份,上官凝儿现在要斗的是亲姨娘,亲庶姐······